Phytoplankton Succession in Recurrently Fluctuating Environments

نویسندگان

  • Daniel L. Roelke
  • Sofie Spatharis
چکیده

Coastal marine systems are affected by seasonal variations in biogeochemical and physical processes, sometimes leading to alternating periods of reproductive growth limitation within an annual cycle. Transitions between these periods can be sudden or gradual. Human activities, such as reservoir construction and interbasin water transfers, influence these processes and can affect the type of transition between resource loading conditions. How such human activities might influence phytoplankton succession is largely unknown. Here, we employ a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect phytoplankton succession. The model is based on the Monod-relationship, predicting an instantaneous reproductive growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig's Law of the Minimum. When these relationships are combined with population loss factors, such as hydraulic displacement of cells associated with inflows, a characterization of a species' niche can be achieved through application of the R* conceptual model, thus enabling an ecological interpretation of modeling results. We found that the mode of reversal in resource supply concentrations had a profound effect. When resource supply reversals were sudden, as expected in systems influenced by pulsed inflows or wind-driven mixing events, phytoplankton were characterized by alternating succession dynamics, a phenomenon documented in inland water bodies of temperate latitudes. When resource supply reversals were gradual, as expected in systems influenced by seasonally developing wet and dry seasons, or annually occurring periods of upwelling, phytoplankton dynamics were characterized by mirror-image succession patterns. This phenomenon has not been reported previously in plankton systems but has been observed in some terrestrial plant systems. These findings suggest that a transition from alternating to "mirror-image" succession patterns might arise with continued coastal zone development, with crucial implications for ecosystems dependent on time-sensitive processes, e.g., spawning events and migration patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phytoplankton Assemblage Characteristics in Recurrently Fluctuating Environments

Annual variations in biogeochemical and physical processes can lead to nutrient variability and seasonal patterns in phytoplankton productivity and assemblage structure. In many coastal systems river inflow and water exchange with the ocean varies seasonally, and alternating periods can arise where the nutrient most limiting to phytoplankton growth switches. Transitions between these alternatin...

متن کامل

Using wavelet analyses to examine variability in phytoplankton seasonal succession and annual periodicity

In most north temperate lakes, phytoplankton biomass oscillates on an annual scale. While phytoplankton seasonal succession within a year has been described for many lakes, much less is known about variability in seasonal succession over multiple years. Here, we describe how continuous wavelet transforms can be used to identify variation in the periodicity in phytoplankton time series at multip...

متن کامل

Competition of phytoplankton under fluctuating light.

Light is an essential resource for phytoplankton and fluctuates on a wide range of timescales. To understand how light fluctuations affect phytoplankton community structure and diversity, we have studied a set of simple models using a combination of analytical and numerical techniques. Light fluctuations can affect community structure when species exhibit the gleaner-opportunist trade-off betwe...

متن کامل

Succession and diel transcriptional response of the glycolate-utilizing component of the bacterial community during a spring phytoplankton bloom.

The influence of the phytoplankton-specific organic compound glycolate on bacterial community structure was examined during the 2004 spring phytoplankton bloom (February to April) in Dabob Bay in Washington. The diversity of the bacteria able to utilize glycolate during the phytoplankton bloom was determined using previously developed PCR primers to amplify the gene for the D subunit of glycola...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015